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A B S T R A C T   

Alzheimer’s disease (AD) is an irreversible brain disease. The structural Magnetic Resonance Imaging (sMRI) has 
been widely used in the diagnosis of AD. However, the characteristic information from a single-mode is not 
comprehensive. In this paper, we proposed a Convolutional- Squeeze-Excitation-Softmax-NET (CSES-NET) deep 
neural network combined with multi-channel feature fusion for the diagnosis of AD. First, three kinds of features 
were extracted including patches based on voxel morphology, cortical features based on surface morphology, and 
radiomics features. Next, the residual network CSES-NET was proposed to extract the deep features from the 
patch images in which the features were re-scaled in the residual structure in order to fit the correlation between 
channels. Then, the fused features of the three channels were applied to classify AD/EMCI/LMCI/NC with the 
fully connected neural network. Finally, radiomics and cortical features were combined with genetic data for 
genome-wide association study to assess genetic variants. We performed experiments with 1539 subjects from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results verified that the 
proposed method improved the effectiveness of the model by extracting nonlinear deep features and fusing the 
multi-channel features. In addition, the genome-wide association study identified multiple risk SNPs loci which 
were associated with the pathological of AD and contributed to the early prevention and control of AD.   

1. Introduction 

Alzheimer’s disease (AD) is a genetically complex and multifactorial 
disease that causes neurodegenerative dementia. The pathology of AD is 
neuronal dysfunction and loss, and even neuronal death, which results 
from the aggregation of extracellular amyloidogenic fibers, plaques, and 
intracellular NFTs [1]. Genetic factors play an important role in the 
development of Alzheimer’s disease. Mild cognitive impairment (MCI) is 
characterized by mild memory impairment which may be a prodromal 
symptomatic stage of dementia. Early diagnosis of AD remains chal
lenging in the clinical applications. 

Different neuroimaging modalities have been used to identify the 
early diagnosis of AD, such as structural Magnetic Resonance Imaging 
(sMRI), Electroencephalography (EEG), functional MRI (fMRI), and 
Diffusion Tensor Imaging (DTI) [2,3,4]. Structural MRI has been widely 

developed for feature extraction and diagnostic classification with the 
traditional machine learning techniques and deep learning-based 
methods. Generally, the biomarkers extraction methods fall into three 
main categories: voxel-based morphometry (VBM) methods, radiomics- 
based methods, and surface-based morphometry (SBM) methods. 

The voxel-based morphometry (VBM) approach usually takes the 
voxels of gray matter images as features [5]. Basher et al. extracted 
volumetric features from the left and right hippocampus of structural 
magnetic resonance imaging (sMRI) data and used a CNN model clas
sification approach to diagnose AD [6]. Ahmed et al. selected the hip
pocampus, amygdala, and insula from sMRI gray matter images and fed 
Three-view patches (TVPs) of these regions into CNN for training [7]. 
Zhu et al. proposed a dual-attention multi-instance deep learning 
network for the early diagnosis of AD and MCI [8], which enhanced the 
identification of discriminative features. 

* Corresponding authors at: School of Physics and Electronics, Shandong Normal University, No.88 Wenhua East Road, Jinan, Shandong 250014, China (J. Qiao). 
E-mail addresses: jpqiao@sdu.edu.cn (J. Qiao), junwang9999@sina.com (S. Wang), wangz@nyspi.columbia.edu (Z. Wang).   

1 Co-first authors: Jianping Qiao and Mowen Zhang contributed equally to this work. 

Contents lists available at ScienceDirect 

Biomedical Signal Processing and Control 

journal homepage: www.elsevier.com/locate/bspc 

https://doi.org/10.1016/j.bspc.2023.105482 
Received 13 October 2022; Received in revised form 26 July 2023; Accepted 12 September 2023   

mailto:jpqiao@sdu.edu.cn
mailto:junwang9999@sina.com
mailto:wangz@nyspi.columbia.edu
www.sciencedirect.com/science/journal/17468094
https://www.elsevier.com/locate/bspc
https://doi.org/10.1016/j.bspc.2023.105482
https://doi.org/10.1016/j.bspc.2023.105482
https://doi.org/10.1016/j.bspc.2023.105482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2023.105482&domain=pdf


Biomedical Signal Processing and Control 87 (2024) 105482

2

The radiomics-based method was an effective method for feature 
extraction of structural brain lesions [9]. The abnormal hippocampal 
shape in sMRI was used to predict the transition from MCI to AD with 
machine learning method [10]. Feng et al. extracted 1692 radiomics 
features in the caudal and head parts of the bilateral hippocampus and 
used support vector machines to differentiate AD and NC [11]. The 
radiomics-based method aimed to mine image features at high 
throughput to improve diagnostic prediction accuracy. 

The surface-based morphometry (SBM) method was also utilized to 
identify biomarkers of AD [12]. Lahmiri et al. classified AD patients and 
healthy control subjects with several machine learning classifiers. They 
extracted surface feature including cerebral cortex, cortical thickness 
and gyrification index[13]. Wu et al. proposed ROI-based surface 
morphometry to characterize gray matter degeneration during AD pro
gression [14]. This method demonstrated the sensitivity of multiple 
cortical indexes for the discrimination of AD, but the small sample size 
was a major problem. Previous studies focused on cortical thickness 
instead of sulcus depth and folds. 

Genetic factors play an important role in the development of Alz
heimer’s disease. AD is preceded by a long asymptomatic period during 
which the proteins in the brain of the affected person have abnormal 
functions. The diversity of amyloid protein fiber structures is closely 
related to disease progression. Amyloid plaques may be a trigger or 
driver of the disease. The accumulation of amyloid in the brain may 
trigger the complex multicellular neurodegenerative process [15]. 
Genome-wide association study (GWAS) is a statistical approach to 
identify single nucleotide polymorphisms (SNPs) associated with phe
notypes. The GWAS had been applied in genetic analysis of Alzheimer’s 
disease in which the dichotomous clinical diagnostic status categories 
were used as phenotypes. In addition, the association of genes with gray 
matter volume was studied. The hippocampal volume in sMRI imaging 
was analyzed as type data for Genome-wide association study [16,17]. 
Nevertheless, most of the GWAS studies neglected the cortical and 
subcortical surface and radiomics changes which might lead to the 
ignorance of the causative genes in the cerebral cortex. 

In this paper, we proposed a Convolutional-Squeeze-Excitation- 
Softmax-NET (CSES-NET) based multi-channel Feature Fusion Classifi
cation Network to classify AD, NC, Early Mild Cognitive Impairment 
(EMCI), and Late Mild Cognitive Impairment (LMCI). First, VBM-based 
patches, SBM-based features, and radiomics-based features were 
extracted from sMRI. Then, we built the CSES-NET to extract deep fea
tures with higher discriminative power in the network channel 
perspective. Especially, the CSES-NET applied an attention mechanism 
with feature scaling to the residual structure, which enabled the network 
to avoid gradient dissipation and extract more nonlinear depth features 
through interdependence between channels. Finally, the CSES-NET was 
embedded with the shallow neural classification network for feature 
fusion of multiple channels and classification of AD, LMCI, EMCI, and 
NC. 

The main contributions of this study were stated as follows: (i) The 
CSES-MFF-NET model utilized three types of features to characterize the 
lesion information. The VBM-based features captured the brain regions 
with structural atrophy, which were extracted by neural networks with 
nonlinear expression of depth features. The SBM-based features 
captured the regions with abnormal cortical thickness, folds, cortical 
complexity and sulcus depth, which were extracted by reconstructing 
the cerebral cortex based on the thickness of the brain gray matter. The 
radiomics-based features captured first order statistics, shape and 
texture, which were extracted from the original image, wavelet trans
form image, and Gaussian image. The fusion of different features could 
improve the effectiveness and stability of the model. (ii) The gene data 
were combined with the neuroimage phenotypic information which 
indicated the relevant causative genes and potential biomarkers of AD. 

2. Materials and methods 

2.1. Dataset 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (https: 
//adni.loni.usc.edu) was used in this study. We used T1-weighted 
structural MRI data with 3T scan intensities from the three datasets at 
baseline. The training set was ADNI-1 and ADNI-2. The test set was 
ADNI-3 for the independent data, and the duplicate data from the 
training set were removed from the test set (Table 1). The model used 
10-fold cross-validation where all the data in the training set were 
randomly divided into ten equal parts, one of which was selected as the 
validation set. The testing set was independent of the training set and 
validation set. 

2.2. Image preprocessing 

Preprocessing was performed using the SPM-based Computational 
Anatomy Toolbox for SPM12 (CAT12) in MATLAB. First, the SPM- 
display for anterior conjoined (AC)-posterior conjoined (PC) correc
tion was used to remove the head movement bias of the individual when 
the MR images were scanned. After aligning all images, we removed the 
skull and excise the cerebellum operation. Then, MR images were 
denoised, de-biased, T1 global intensity corrected and corrected noise 
by the non-local mean (NLM) filter. Each MR image was tissue 
segmented to yield a gray matter GM image. Next, all subject GM images 
were aligned to the Montreal Neurological Institute (MNI) standard 
template. Finally, modulation normalization was performed to 
compensate for the effects of spatial normalization, which caused vol
ume changes due to affine transformation and nonlinear warping. The 
modulated images retained the total amount of gray matter signal in the 
normalized partition. Therefore, volume correction was performed on 
the modulated GM gray matter images. 

2.3. Deep features based on CSES-NET 

First, we selected the regions of interest (ROIs) with significant dif
ferences by the Statistical Parametric Mapping 12 (SPM12) toolbox. 
Specifically, the GM image generated by segmentation during image 
preprocessing was smoothed with an 8 mm Gaussian kernel to improve 
the signal-to-noise ratio of the image data. Then the generalized linear 
statistical model was developed, which was intended to establish the 
same two-sample t-test statistical model for each voxel. After that, the 
parameters of the statistical model were estimated and the T-statistic of 
each voxel was calculated to generate the SPM map. Last, we used the 
Family Wise Error (FWE) to get the anomalous region at the significant 
level (p < 0.01) and transformed the landmark locations from MNI space 
coordinates to the space voxel coordinates by using MRIcroN software. 

Second, the nonoverlapping image patches were extracted according 
to the center of the significant regions. The group comparisons were 
conducted between the training set ADNI-1 and ADNI-2 instead of the 
testing set, which avoided the overfitting of the model. These patches 
were spliced and used as input images for the CSES-NET channel 

Table 1 
Demographic information of the subjects.  

Dataset Category Number Age 
(Mean ± std) 

Gender 
(Male/Female) 

ADNI1 AD 197 75.73 ± 7.71 101/96 
NC 224 76.13 ± 4.94 118/106 

ADNI2 AD 155 74.75 ± 7.97 89/66 
NC 193 73.34 ± 6.43 91/103 
EMCI 216 71.11 ± 6.85 119/97 
LMCI 162 72.36 ± 7.48 90/72 

ADNI3 AD 63 74.67 ± 7.88 38/25 
NC 329 70.18 ± 6.37 173/212  
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attention deep neural network. 
Third, we proposed the CSES-NET channel attention residual neural 

network for the deep feature extraction. This network consisted of 
sixteen blocks and each block was divided into the convolutional path 
and the identity path, as shown in Fig. 2. Specifically, the convolutional 
path was used to change the dimensionality of the network and extract 
features. The identity path was used to deepen the network. The residual 
convolution block was utilized to avoid the gradient disappearance 
which was caused by amounts of layers of the deep learning network. In 
the proposed CES-NET network, each convolutional path contained 
three convolutional layers and channel attention mechanism. Specif
ically, the average pooling layer was added after the convolutional path 
to squeeze the feature map. The two connected convolutional layers 
were used to extract nonlinear features and increase the nonlinear 
representation of features. Then the softmax layer was activated to 
obtain the probability number between 0 and 1 to extract the feature 
importance of each channel. The feature weights were multiplied and 
summed with the input of this block. The high weights enhanced the 
highlighted features and suppresses the use less ones. The CSES channel 
attention model in the deep network provided discriminative deep fea
tures for classification. 

The deep network consisted of sixteen CSES blocks. In each block, the 
output of the convolutional block in the backbone network was the input 
X of the channel attention model. After the convolution block operation, 
the output U was obtained. Then U passed through the global average 
pooling layer and completed the squeeze operation, which squeezed the 
matrix of H × W × C to 1× 1× C. The information of each channel was 
represented by the global average pooling value of the channel. Then we 
could get Us by: 

Us = Fsq(U) =
1

W × H
∑W

i=1

∑H

j=1
U(i, j) (1) 

where Us passed through two 2D convolutional layers with a con
volutional kernel size of 1× 1. The channel number of the two convo
lution layers were C

16 and C, respectively. The depth nonlinear 
characteristic Ue was computed by: 

Ue = Fex(Us) = W2δ(W1Us) (2) 

where δ represented the ReLU activation function, W1 ∈ RC
r×C and 

W2 ∈ RC×C
r . Let σ denoted the softmax function, the probability value Uy 

was obtained by scaling Ue which was expressed by: 

Uy = Fsm(Ue) = σ(W2δ(W1Us)) (3) 

The final output Y of the CSES module was obtained by: 

Y = I + I*Uy (4) 

This weight Uy enhanced useful features and suppressed useless 
features which improved the judgment ability of the network by 
increasing the weight of the effective profile map. The depth network 
was generated by the superposition of CSES channel attention modules, 
which gradually dominated the entire depth network and weakened the 
weight of useless features. Therefore, the proposed CSES block provided 
discriminating deep feature for the classification. 

2.4. Radiomics-based features 

We used the pyradiomics package which was an open-source Python 
toolkit to extract radiomics features. Radiomics features were generated 
from the original image, wavelet filtered image and Laplace Gaussian 
(LoG) filtered image. The wavelet filter was applied to the original 
image to obtain the decomposed and approximated images. The Laplace 
Gaussian filter was used as an edge enhancement filter. The shape, in
tensity, and texture features included First Order features, Shape fea
tures (3D), Shape features (2D), Gray Level Co-occurrence Matrix 
(GLCM) features, Gray Level Size Zone Matrix (GLSZM) features, Gray 
Level Run Length Matrix (GLRLM) features, Neighbouring Gray Tone 
Difference Matrix (NGTDM) features, Gray Level Dependence Matrix 
(GLDM) features. Then the feature selection was performed by using 
LightGBM with the 1291 extracted radiomics features. Specifically, the 
leaft-wise strategy was used to select the node with the greatest diver
gence benefit from all the current leaf nodes for splitting. Finally, the 
features with significant heterogeneity were selected for classification. 

2.5. Surface morphological features 

The surface-based morphometric method was used to extract cortical 
surface features. In the preprocessing stage, all samples were subjected 
to the anterior concatenation-posterior concatenation (AC-PC) correc
tion to eliminate head movement bias in individuals scanning MR 

Fig. 1. The framework of the Alzheimer’s disease classification algorithm based on the Convolutional-Squeeze-Excitation-Softmax Multi-channel Feature Fusion 
Classification Network (CSES-MFF-NET). 
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images. We implemented skull removal, cerebellar excision operations, 
global intensity correction, intensity normalized denoising and local 
adaptive segmentation using CAT12 after manual alignment of all im
ages. Creation of initial surfaces was performed in the left and right 
cerebral hemispheres including topology correction and surface refine
ment, refinement of central surface correction in the highly collapsed 
region of the central surface, spherical mapping with area smoothing 
and reconstruction of the cortical surface. 

We calculated the cortical thickness, sulcus depth, gyrification index 
and fractal dimension of each ROI based on brain mapping templates 
“DK40″, ”HCP_MMP1″ and “a2009s”. Then all data of each sample were 
concatenated into a 1 × 2344 row vector. The feature selection of the 
cortical indexes was performed using LightGBM to obtain the features 
that contribute to the classification. 

2.6. Multi-channel feature fusion and classification 

The framework of multi-channel feature fusion classification 
network (CSES-MFF-NET) was shown in Fig. 1. First, the selected 
radiomics features and cortical index features were normalized to match 
the numerical distribution of the deep features. Then, the normalized 
radiomics features and cortical features were connected with discrimi
native depth features to form a 1 × m1 column vector. The vector was 
inputted into a five-layer neural network with the input layer, two fully 
connected layers, softmax layer and classification layer. The non-linear 
representation of the feature data was obtained through the connected 
layers. Finally, the softmax layer and the classification layer were used 
to make the final classification prediction. 

The concatenated feature column vector was used as the input of the 
classification network : 

F = [F1,F2,⋯,Fm]
T (5) 

After the two fully connected layers, the local feature values were 
integrated to form the feature map : 

X = W2(W1F + b1)+b2 (6) 

where X ∈ [a1, a2]
T, m1 and m2 were the number of channels, 

W1 ∈ Rm1×m2 , W2 ∈ Rm2×m3 , b1 ∈ Rm2 , b2 ∈ Rm3 . The output of the model 
was compressed into the (0,1) interval by using the Softmax function to 
obtain the probability of the model which was used to judge whether the 
sample to be the positive or negative classes Sj: 

Sj =
eaj

∑T
i=1eai

(7) 

where T means class number. The final category of the sample was 
determined by the largest value in the probability Sj. 

2.7. Genome-wide association study 

The genetic data of the 651 subjects which were conducted in the 
sMRI analysis from both ADNI1 and ADNI2 datasets were utilized for 
genome-wide association study. First, we pre-analyzed the features ob
tained from the CSES-MFF-NET by using Statistical Product and Service 
Solutions (SPSS). The data analysis was conducted on the features with 
large classification contribution values after the selection of radiomics 
features and cortical index features. Significance analysis was conducted 
for each characteristic value by using the independent sample t-test in 
SPSS software. Then features with significance p < 0.01 were reserved 
for correlation analysis of phenotypic information. After that, quality 
control (QC) was performed with the following eight steps:  

(1) The genetic data and phenotypic data of the two databases were 
combined to get a total of 1,008,823 SNPs loci and 1550 subject 
samples.  

(2) Subjects were screened for stringent deletion rates. Subjects with 
locus deletion rates and individual deletion rates of more than 
0.02 were removed.  

(3) Subjects were screened by Minimum Allele Frequency (MAF) 
method. The SNPs with MAF<0.05 were removed to avoid false 
positives, which corresponded to the same gene and contributed 
less information. Therefore, the 300,360 variants and 1526 peo
ple were selected for the next steps.  

(4) The Hardy-Weinberg Equilibrium (HWE) was the law of genetic 
equilibrium. The frequency of each genotype was calculated by: 

(p + q)2
= p2 + 2pq+ q2 (8) 

where p + q = 1, (p + q)2
= 1. The expected value E was obtained 

for each genotype, and the number of observations A was compared with 
the expected value E by χ2 test: 

χ2 =
∑ (A − E)2

E
(9) 

The 299,167 SNPs and 1526 individuals with genetic susceptibility 
greater than 0.000001 were retained by the chi-square test. 

(5) The Heterozygosity test was used for SNPs selection. The fre
quency of heterozygous genotypes HET for each subject was 
calculated by: 

Fig. 2. Convolutional-Squeeze-Excitation-Softmax block.  
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HET = (NM − HOM)/NM (10) 

where the number of pure genotypes per subject was denoted by 
HOM and the total number of genotypes was denoted by NM. Individuals 
with high or low heterozygosity and sample heterozygosity deviating 
from ±3 standard deviations from the mean were excluded. The lower 
and upper bounds of the HET values were expressed by: 

min = mean(HET)+ 3*std(HET) (11)  

max = mean(HET) − 3*std(HET) (12) 

We selected 1486 individuals with HET values within the boundary.  

(6) Linkage disequilibrium (LD) screening SNPs was used to measure 
whether genotypic changes in two molecular markers were syn
chronized and correlated. The LD was computed by using the 
correlation coefficient r2 :

r2 =
D2

pA(1 − pA)pB(1 − pB)
(13) 

where D was the coefficient of linkage disequilibrium, pA was the 
frequency of the A gene line in the allele, pB was the frequency of B 
genotype. We excluded SNPs with correlation coefficients greater than 
0.5 which were not completely independently inherited during inheri
tance. The 187,622 independent SNPs were selected.  

(7) We used principal component analysis (PCA) to estimate genetic 
background covariance which was used to adjust tests of associ
ation. We completed the correction of population stratification 
phenomenon to avoid spurious association due to population 
stratification.  

(8) Phenotypic information filtering. The 620 subjects with both 
genetic and phenotypic information were retained. 

The 187,622 variants and 620 people were selected after the quality 
control process. We utilized the radiomics features and cortical metrics 
that were statistically significantly different (p < 0.01) for the early 
classification of AD for association analysis. Genome-wide association 
analysis was conducted sequentially with eight radiomics features and 
fourteen vertex cortical indexes. 

3. Results 

3.1. Evaluation metrics 

The accuracy (ACC), sensitivity (SEN), specificity (SPE), precision 
(PRE), recall (REC), F1 score, and Area Under Curve (AUC) were used as 
evaluation metrics to evaluate the performance of the model. The per
formance was further visualized using ROC curves for comparison. The 
TP denoted true positive, TN denoted true negative, FP denoted false 
positive, and FN denoted false negative. The accuracy was the per
centage of correct predictions for all samples to the total sample. 
Sensitivity indicated the percentage of all patients that were predicted 
correctly and measured the ability of the classifier to identify patients. 
Specificity was similar to sensitivity and measured the ability of the 
model to identify normal controls. Precision meant the probability of 
actual disease in the population judged to be diseased. Recall meant the 
average of both categories being predicted correctly. F1score was used 
for comprehensive evaluation. 

3.2. Methods for comparison 

The proposed method was compared with four classification models 
which were (i) Resnet method [18]. The Resnet50 deep residual network 
was directly applied to classify subjects. (ii) CSES-NET method [19]. 
Deep neural networks containing attention mechanisms were used for 

feature extraction. The final predictive classification was performed by 
two fully connected layers and a softmax layer. (iii) CSES -SVM method 
[20]. Features were extracted from deep neural networks and support 
vector machines was used as classifier. (iv) CSES-MFF-SVM method 
[21]. The deep features were extracted with the deep neural network. 
The radiomics and cortical features were spliced with the deep features. 
The SVM was used for classification. The same input images were 
applied in all comparison experiments. 

3.3. Classification results 

The brain voxel and surface comparisons identified significantly 
different regions between AD and NC which were shown in Fig. 3 and 
Fig. 4. The anatomical landmarks were used as biomarkers and the 
prediction of AD. 

The Table 2 showed the results of AD, NC, EMCI, and LMCI classi
fication of different models. The ACC and AUC of the proposed CSES- 
MFF-NET method were better than other classification models. The ac
curacy of AD and NC classification was 96.17 %. The SEN, SPE, PRE, 
RECALL, F1 score and AUC were 84.13 %, 98.48 %, 94.19 %, 91.30 %, 
92.73 % and 98.83 %, respectively. The ROC curves of the different 
classification models were shown in Fig. 5. The proposed CSES-MFF- 
NET method had higher evaluation indexes compared with existing 
methods. 

We also compared the proposed CSES-MFF-NET method for AD/NC 
classification with other state-of-the-art methods with the same datasets, 
including (i) the method using landmark blocks with convolutional 
neural networks [22,23], (ii) the method combining radiomics features 
with SVM [24], (iii) the landmark blocks using residual network dense 
net classification [25], (iv) the method based on ROI region block fea
tures combined with Linear Discriminant Analysis (LDA) [26], (v) the 
method of convolutional network for classification of hippocampal 
image blocks in ROI region [27], (vi) dual attention multi-instance deep 
learning [8], (vii) the method of multiple feature fusion based on ROI 
[28]. The comparison results were shown in Table 3. The proposed 
method outperformed other advanced methods in terms of accuracy, 
SEN, SPE and AUC results. 

In addition, Table 4 showed the comparison results of the EMCI/ 
LMCI classification. The comparison methods included (i) MRI and DTI 
multimodal ROI image blocks [26], (ii) brain functional connectivity 
networks and sparse matrices [29], (iii) brain connectivity networks 
combined with SVM [30], (iv) DWI diffusion-weighted imaging of brain 
network structures [31], (v) shape features and multilayer perceptron 
(MLP) based classification method [32]. The experimental results 
demonstrated that the proposed CSES-MFF-NET method had the best 
performance for EMCI/LMCI classification. 

3.4. GWAS results 

We selected eight radiomics features and cortical thickness features 
in fourteen brain regions by using the significance analysis with p-val
ues<0.01. The radiomics and surface features were extracted from the 
multi-channel feature fusion framework. These feature values were used 
as phenotypic information for association analysis to obtain the associ
ated SNPs loci and risk genes. The Manhattan plots of analysis result 
were shown in Fig. 6. Specifically, rs162031 was correlated with two 
radiomics features which were log-sigma-3-0-mm-3D_glszm_GLN and 
wavelet-LLL_glszm_SZN. Moreover, the rs10801929, rs12565115, 
rs2075650 and rs2225612 were associated with cortical thickness in 
multiple brain regions. Three SNPs were significantly correlated (p < 1×

10− 6) with the wavelet-LLL_glszm_SZN and the thickness of two brain 
regions. The Hamanton and Quantile-Quantile (Q-Q) plot of three 
phenotypic information were presented as shown in Fig. 7. The specific 
information of all SNPs loci with significance was shown in Table 5, in 
which several risk loci were associated with abnormalities in brain 
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structure or neuroproteins. The proposed method used brain imaging as 
the dependent variable and identified genes that influenced brain im
aging differences between AD and NC. 

4. Discussion 

We proposed the Convolutional-Squeeze-Excitation-Softmax-NET 
(CSES-NET) deep neural network combined with the multi-channel 
feature fusion method for AD, NC, EMCI, and LMCI classification. In 

Fig. 3. Visualization of differential brain regions for comparison between groups based on VBM.  

Fig. 4. Visualizations of brain regions with significant differences in cortical indicators based on SBM.  
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addition, the genetic data combined with radiomics features and cortical 
metrics were analyzed to obtain the associated SNPs loci and risk genes 
by utilizing the genome-wide association study. We found several risk 
genes associated with phenotypic features and analyzed the role of gene 
function on traits. 

The landmark regions based on VBM and SBM were consistent with 
the previous studies[33]. We found the significant differences in the 

hippocampus, amygdala, thalamus, cingulum, and fusiform gyrus in AD 
by using the gray matter images with VBM. Moreover, we performed the 
group comparison of the cortical thickness, sulcus depth, gyrification 
index and fractal dimension of the cortex with surface-based 
morphology method. These results could be stated as follows. First, 
the thickness of AD had significant atrophic changes in brain regions 
such as bilateral parahippocampal gyrus, left superior temporal gyrus, 

Table 2 
Classification results of the proposed method and the comparison methods.  

Method Classification  

AD/NC AD/LMCI 

ACC SEN SPE P R F1 AUC ACC SEN SPE P R F1 AUC 

Resnet 0.923 0.698 0.966 0.871 0.832 0.861 0.923 0.781 0.8571 0.583 0.726 0.720 0.7273 0.810 
CSES-SVM 0.938 0.809 0.963 0.886 0.886 0.886 0.971 0.839 0.8730 0.750 0.797 0.797 0.8042 0.881 
CSES-NET 0.941 0.821 0.960 0.886 0.901 0.893 0.971 0.850 0.8889 0.750 0.811 0.811 0.8155 0.884 
CSES-MFF-SVM 0.946 0.841 0.966 0.898 0.903 0.901 0.973 0.862 0.9048 0.767 0.810 0.810 0.8211 0.888 
CSES-MFF-NET 0.962 0.841 0.985 0.942 0.913 0.927 0.988 0.874 0.9365 0.792 0.840 0.840 0.8293 0.892  

Classification 

Method EMCI/LMCI NC/LMCI 

ACC SEN SPE P R F1 AUC ACC SEN SPE P R F1 AUC 

Resnet 0.631 0.520 0.686 0.597 0.603 0.599 0.629 0.747 0.108 0.9524 0.6922 0.580 0.631 0.678 
CSES-SVM 0.658 0.622 0.771 0.627 0.618 0.622 0.635 0.816 0.500 0.9365 0.7905 0.718 0.752 0.804 
CSES-NET 0.671 0.464 0.792 0.641 0.628 0.635 0.641 0.816 0.500 0.9365 0.7905 0.718 0.752 0.803 
CSES-MFF-SVM 0.644 0.464 0.750 0.613 0.607 0.610 0.636 0.839 0.500 0.9841 0.8464 0.742 0.984 0.803 
CSES-MFF-NET 0.724 0.714 0.729 0.710 0.722 0.716 0.775 0.851 0.500 0.985 0.881 0.734 0.968 0.804  

Classification 

Method NC/EMCI AD/EMCI 

ACC SEN SPE P R F1 AUC ACC SEN SPE P R F1 AUC 

Resnet 0.642 0.506 0.762 0.590 0.584 0.587 0.715 0.863 0.921 0.750 0.853 0.835 0.844 0.903 
CSES-SVM 0.695 0.656 0.762 0.671 0.685 0.678 0.719 0.874 0.921 0.781 0.862 0.851 0.857 0.919 
CSES-NET 0.726 0.594 0.793 0.697 0.694 0.694 0.725 0.884 0.937 0.781 0.878 0.859 0.868 0.918 
CSES-MFF-SVM 0.697 0.625 0.730 0.667 0.678 0.672 0.723 0.884 0.936 0.781 0.878 0.859 0.868 0.921 
CSES-MFF-NET 0.737 0.656 0.857 0.726 0.677 0.694 0.760 0.895 0.952 0.781 0.894 0.867 0.880 0.926  

Fig. 5. ROC curves for the comparison of the five methods of AD/EMCI/LMCI/NC classification.  
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left middle temporal gyrus, right fusiform gyrus, bilateral middle frontal 
gyrus and bilateral cingulate gyrus, as shown in Fig. 4 (A). Second, there 
were significant differences of the sulcus depth indexes in the right 
anterior gyrus, left middle frontal gyrus, left superior temporal gyrus 
and both insula, as shown in Fig. 4(B). Third, the gyrification index had 
significant differences in the parahippocampal gyrus, insula and right 
cingulate gyrus, as shown in Fig. 4(C). Finally, fractal dimension of the 
left precentral gyrus, left insula, left cingulate gyrus and both para
hippocampal gyrus changed significantly, as shown in Fig. 4(D). These 
findings were consistent with the previous studies including VBM 
analysis, medical clinical experience and cortical thickness. [34,35]. 
Specifically, the thickness in the temporal and frontal lobes was thinned 
in patients with diseases from mild cognitive impairment to Alzheimer’s 
disease, which was highly coincident in the VBM and SBM group com
parison analysis. Therefore, there was correlation between SBM cortical 
changes and VBM gray voxel strength differences, both of which might 
be used as biomarkers for AD diagnosis. These results indicated the 
heterogeneity in the changes of brain tissue and clinical outcomes of 
individuals with AD. 

We conducted the VBM and SBM analysis as well as the group 
comparison between AD and NC. Consistent with the previous studies 
[33–35], we found gray matter atrophy and cortical thinning in the 
brain regions including hippocampus, amygdala, thalamus, cingulum 
and fusiform gyrus in AD compared with NC, which may be related to 
the memory, emotion, attention and cognition disorder of the patients. 
These findings of the abnormal brain areas were used as the biomarkers 
in the classification models which might be helpful for the pathology 
and treatment of AD such as Transcranial Magnetic Stimulation (TMS) 
[36]. TMS was used to alter the action potential of cortical neurons by 
changing the induced current in the cerebral cortex, which in turn 
affected the metabolism of substances and neurophysiological activity in 
the brain [37]. The precise abnormal brain regions would benefit the 
TMS treatment and help slow down the progression of the patient’s 
disease. 

The proposed channel attention deep learning networks for early 
diagnosis of AD had the better performance in comparison with various 
advanced methods. Shakeri et al. used a softmax-activated multilayer 
perceptron for hippocampal shape features in the somatic part to iden
tify AD [32]. Salunkhe et al. captured the texture features of the region 
of interest based grayscale symbiotic matrix (GLCM) for AD 

Table 3 
AD/NC: Performance comparison of the proposed method with the state-of-the- 
art methods.  

Reference Method ACC SEN SPE AUC 

Liu et al. [22] patch + CNN  0.9056  0.8742  0.9303  0.9574 
Wu et al. [24] Radiomics + SVM  0.8903  0.8544  0.9197  0.9110 
Li et al. [25] Landmark patch +

Densenet  
0.8950  0.8790  0.9080  0.9240 

Lian et al.  
[23] 

patch + CNN  0.9030  0.8240  0.9650  0.9510 

Zhu et al. [8] patch + DCNN  0.9240  0.9100  0.9380  0.9650 
Liu et al. [26] Multi ROI feature +

SVM ensemble  
0.9465  0.8889  0.9503  0.9826 

Hett et al.  
[26] 

ROI patch + LDA  0.9130  0.9340  0.8300  0.9470 

Cui et al. [27] ROI patch + CNN  0.9229  0.9063  0.9372  0.9695 
CSES-MFF- 

NET(ours) 
Multi- feature 
fusion þ CNN  

0.9617  0.8413  0.9848  0.9883  

Table 4 
EMCI/LMCI: Performance comparison of the proposed method with the state-of- 
the-art methods.  

Reference Method EMCI/ 
LMCI 

ACC SEN SPE AUC 

Hett et al.  
[26] 

ROI patch 65/34  0.688  –  –  0.661 

Zhan et al. 
[29] 

Connectivity 
network 

73/39  0.650  0.78  0.64  0.70 

Prasad 
et al.  
[30] 

Connectivity 
network 

74/38  0.634  –  –  – 

La Rocca 
et al.  
[31] 

network 
features 

85/38  0.700  0.76  0.65  0.70 

Shakeri 
et al.  
[32] 

Shape feature 160/ 
160  

0.630  0.620  0.660  – 

CSES- 
MFF- 
NET 
(ours) 

Multi- 
feature 
fusion 

216/ 
162  

0.7237  0.7143  0.7292  0.7753  

Fig. 6. Presentation of the results of the association analysis: (A) Ring Manhattan plot of 8 radiomics features significantly associated with the presence or absence of 
disease (B) Ring Manhattan plot of 14 cortical index features significantly associated with the presence or absence of disease. 
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classification [38]. However, most researchers used traditional machine 
learning methods to classify shallow and low-dimensional features, such 
as shape, texture, first-order statistics and cortical metrics. In this study, 
we attempted to combine multiple features with channel attention deep 
learning networks. According to the comparative experiment with the 
SVM method, the proposed fully connected classification network had 
slight advantages. Hett et al. combined structural and diffusion MRI 
based on the framework of the multimodal patch to improve the per
formance of the current hippocampus-based classification [26]. The 
fusion of the multimodality might be benefit for the AD and MCI pre
diction. However, some modalities might be absent during image 
acquisition which would affect the implementation of these methods 
[39]. Therefore, the proposed method proceeded to multi-channel fea
tures from MRI-based of brain imaging data which achieved better 
classification results and obtained more pathological information. 

In this study, the structural MRI combined with deep-learning 
methods were used for computer-aided diagnosis of AD. Structural 
MRI was performed on the MRI scanner and the participants were 
instructed to rest during scanning. The clinical examinations include 
plasma markers, biochemical metabolism examination in cerebrospinal 
fluid, cognitive function test and medical imaging. The accuracy of 
clinical diagnosis is around 70 % or less [40,41]. Cognitive function was 
related with AD, but it cannot reflect AD directly because of the indi
vidual heterogeneity in experiences and symptomology [42]. The defi
nite diagnosis of AD relied on pathological examination of brain tissue. 
But the pathological method diagnosis could only be made by examining 
brain tissue after death. Therefore, this study could find the potential 
biomarkers and discriminative brain regions associated with the disease, 
which may help physicians to make accurate diagnosis. In addition, the 
potential model accuracy improvement and big data would be benefit 

for the personalized accurate diagnosis and treatment. The quantifica
tion of cortical thickness and sulcus depth for brain regions might be 
useful for the individualized recommended dosage or evaluating the 
therapeutic effects of medications. Moreover, the biomarkers had an 
important role in the drug development process and potential applica
tions in clinical trials. For example, the biomarkers might be used as 
diagnostic aids to enrich the patient sample with cases of Alzheimer’s 
disease as well as safety markers to detect potential side effects of the 
drug. 

The National Institute on Aging and the Alzheimer’ s Association 
(NIA-AA) presented revised diagnostic guidelines for the clinical diag
nosis of Alzheimer’s disease at the Alzheimer’ s Association Interna
tional Conference (AAIC) 2023 (https://aaic.alz.org/nia-aa.asp). The 
biomarkers were grouped into three categories, including core AD bio
markers, non-specific biomarkers and biomarkers of common non-AD 
co-pathologies. The biomarkers that measured in the anatomic MR im
aging in this study were the non-specific biomarkers of tissue reaction 
involved in AD pathophysiology, which could be used for staging, 
prognosis and as indicators of biological treatment effect as well as the 
identification of co-pathology. In addition, imaging and fluid bio
markers within a pathobiological category were not interchangeable for 
many use cases. Therefore, the future work will incorporate the imaging 
and fluid biomarkers in order to define neurodegenerative diseases 
biologically for AD disease rather than based on syndromic presentation. 

Genetics was combined with imaging manifestations of brain dis
eases to find root-related causes of lesions in brain tissue structures. The 
GWAS method was used to identify genetic loci associated with traits 
and identified functional variants and genes. In this study, we found 
several SNPs and their corresponding genes which were strongly 
correlated with cortical thickness and texture traits as shown in Table 4. 

Fig. 7. Manhattan and Q-Q plots for association analysis of three significantly correlated phenotypic features (the results of the analysis of Precentral gyrus thickness, 
Posterior Orbital Frontal Complex thickness, and wavelet-LLL_glszm_SZN textural feature are shown from left to right, with significant SNPs marked). 
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Risk genes were identified by analyzing the correlation between variants 
and imaging features of brain abnormal areas. The underlying cause of 
this correlation was the functional changes in the proteins expressed. 
Specifically, STARD4 affected specific functions of cellular cholesterol 
homeostasis in a cell-type-specific manner in the central nervous system. 
The neurosteroids affected brain cholesterol metabolism, which in turn 
affected the patient’s cognition and behavior [43]. The MME was able to 
cleave the protease of β-amyloid (Aβ) polypeptide produced by neuronal 
cells of AD patients. SLIT3 expression caused atrophy of the hippo
campus. Variants in the MTRR gene were associated with cognitive 
impairment, brain atrophy and white matter disease. These brain 
changes could increase the risk of cognitive impairment and severity of 
dementia [44]. The FRMD4A could regulate Tau protein secretion 
through presynaptic vesicle mechanisms and polar signaling pathways. 
Tau protein release was associated with neuronal activity. Genetic fac
tors affected presynaptic vesicle release in the aging brain, which might 
influence the progression of AD [45]. It had been reported that SER
PINA3 might bound to amyloid. SerpinA3 signaling peptide poly
morphisms were associated with the early onset of Alzheimer’s disease 
[46]. The TOMM40 was involved in protein degradation, apoptosis, 
neuronal loss and regulation of neural development [47]. The KLHL, 
CD101, HPCAL4, CRACD, OSBPL10, CFAP99, ECT2L, SGCZ, PDK1, 
VAV2, and NUP153 were expressed in the cerebral nervous system and 
associated with brain cortical structures, blood–brain barrier and 
cellular lipid metabolism. They played an important role in the func
tional pathways affected by AD. Immune dysregulation was clinically 
present in the brain and blood of Alzheimer’s disease patients, which 
was associated with the expression of the HAO1 and PRF1 genes. 

These genetic findings were benefit for the early diagnosis of AD. It 
may be difficult for family members and clinicians to detect abnormal
ities in patients for a long time before clinical symptoms of Alzheimer’s 
disease appear. The asymptomatic individuals were at high risk of 

developing Alzheimer’s disease and should be continuously observed 
and prevented in advance. The imaging features of AD were derived 
from protein abnormalities, which were influenced by genetic and 
environmental factors. Variant genes STARD4, MME, MTRR, FRMD4A 
and TOMM40 might lead to pathological features of senile plaques, 
neuronal fiber tangles, hippocampal pyramidal cell granular vacuolar 
degeneration and neuronal deficits through protein expression. There
fore, the study of the susceptibility genes would be helpful to explore the 
underlying mechanisms of the disease. In addition, the lifestyle habits 
and environmental factors might interact with genetic and affect the risk 
of AD development. Specifically, Chronic cigarette smoking had been 
linked to increased rates of cognitive impairment [48] and structural 
abnormalities in the brain including alterations in cerebral white matter 
volume [49,50], and atrophy of gray matter structures in the temporal 
and parietal lobes [51]. Therefore, the environmental factors might be 
important in the initiation and promotion of the Alzheimer’s disease. 

Several limitations should be considered in this study. First, we only 
utilized the structural MRI instead of other modalities. Different types of 
brain imaging data contained different information. Therefore, the 
future work will focus on the findings of biomarkers in other types of 
brain imaging data and verifying the robustness of the model, such as 
fMRI, PET and DTI. Second, the brain atlases of different patient groups 
were various. Therefore, the model should be tested and improved on 
different patient groups such as different countries, nationalities, and 
ethnicities in order to evaluate the generalizability and reliability of the 
proposed method. 

5. Conclusion 

In this paper, we proposed the multi-channel feature fusion method 
based on CSES-NET for early AD diagnosis. The features from multiple 
image scales of sMRI were used in the fully connected networks for 

Table 5 
Results of Genome-Wide Association Study of radiomics features and cortical indicators as phenotypic information.  

Pheno SNPs BP A1 BETA STAT P Gene Ch 

Thickness7(Somatosensory and Motor Cortex) rs12565115 39941174 T  0.1031  4.458 9.83E-06 HPCAL4 1 
Thickness8(Paracentral lobule and sulcus) rs10801929 117395987 A  − 0.07453  − 4.55 6.49E-06 CD101 1 
Thickness10(Precentral gyrus) rs10801929 117395987 A  − 0.07157  − 4.594 5.29E-06 CD101 1 
Thickness13(Primary motor cortex) rs12565115 39941174 T  0.1377  4.626 4.57E-06 HPCAL4 1 
Thickness14(Paracentral lobule and sulcus) rs12565115 39941174 T  0.1006  4.721 2.92E-06 HPCAL4 1 
Thickness14(Paracentral lobule and sulcus) rs10801929 117395987 A  − 0.08547  − 4.761 2.42E-06 CD101 1 
log-sigma-5 mm-4D_glrlm_LRE rs9866738 31683747 T  − 1.277  − 4.763 2.39E-06 OSBPL10 3 
log-sigma-1 mm-3D_glszm_SALGLE rs1025192 156310481 T  − 0.01293  − 4.79 2.10E-06 MME 3 
Thickness9(ParaHippocampal) rs17799799 56663428 G  0.09132  4.472 9.24E-06 CRACD 4 
Thickness11(Postcentral gyrus) rs1203764 2407088 T  0.04773  4.669 3.73E-06 CFAP99 4 
log-sigma-5 mm-3D_glrlm_LRE rs12515660 168553502 A  − 2.146  − 4.471 9.31E-06 SLIT3 5 
Thickness4(Posterior orbital frontal complex) rs9326839 110982999 C  − 0.1262  − 4.976 8.47E-07 STARD4 5 
waveletLLL_glszm_SZN rs162031 7933287 T  10.03  4.987 8.03E-07 MTRR 5 
log-sigma-3 mm-3D_glszm_GLN rs162031 7933287 T  − 14.59  − 4.797 2.03E-06 MTRR 5 
Thickness1(Circular sulcus of the insula) rs12199222 17807301 T  − 0.07436  − 4.567 6.00E-06 NUP153 6 
Thickness5(Somatosensory and Motor Cortex) rs9403008 139194398 T  0.09041  4.693 3.33E-06 ECT2L 6 
Thickness9(ParaHippocampal) rs7823866 14722890 C  − 0.123  − 4.503 8.03E-06 SGCZ 8 
Thickness3(Primary motor cortex) rs4879382 29781410 A  0.09045  4.509 7.80E-06 PDK1P1 9 
Thickness5(Somatosensory and Motor Cortex) rs10993877 135818892 C  0.04419  4.734 2.74E-06 VAV2 9 
log-sigma-1 mm-4D_glszm_SlALGLE rs2895596 14306091 A  0.0171  4.583 5.58E-06 FRMD4A 10 
Thickness8(Paracentral lobule and sulcus) rs10999463 72101608 A  − 0.08242  − 4.876 1.38E-06 PRF1 10 
Thickness4(Posterior orbital frontal complex) rs8023057 94167309 G  − 0.1142  − 4.528 7.16E-06 SERPINA3 14 
Thickness5(Somatosensory and Motor Cortex) rs11160653 19969016 T  − 0.04949  − 4.631 4.45E-06 KLHL33 14 
Thickness2(Central sulcus) rs2075650 50087459 G  − 0.11  − 4.625 4.58E-06 TOMM40 19 
Thickness3(Primary motor cortex) rs2075650 50087459 G  − 0.0623  − 4.637 4.32E-06 TOMM40 19 
Thickness3(Primary motor cortex) rs2225612 44990743 A  − 0.0975  − 4.966 8.91E-07 EYA2 20 
Thickness10(Precentral gyrus) rs2225612 44990743 A  − 0.09414  − 4.497 8.25E-06 EYA2 20 
log-sigma-4 mm-4D_glszm_GLNN rs8113842 7860083 A  − 0.00579  − 4.568 5.97E-06 HAO1 20 
Thickness12(Precentral gyrus) rs2225612 44990743 A  − 0.1  − 4.784 2.16E-06 EYA2 20 
Thickness13(Primary motor cortex) rs2225612 44990743 A  − 0.07286  − 4.87 1.42E-06 EYA2 20 

Note: Pheno is the characteristic name phenotype (where the thickness information includes the name of the brain region of this ROI in its corresponding brain atlas), 
SNPs is the RS number, BP (base-pair) is the physical position of the SNPs, A1 is the minor allele name based on the whole sample, NMISS is the number of non-missing 
genotypes, BETA is regression coefficient, STAT is coefficient t-statistic, P-value is the asymptotic p-value for t-statistic, GENE is implicated gene, Ch indicates the 
chromosome number of the SNPs. 
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classification which included deep features based on attention-based 
deep convolutional neural networks, radiomics features based on gray 
matter images and four cortical index features. The neuroimaging po
tential biomarkers associated with the disease may help physicians to 
make early diagnosis of AD. In addition, identification of risk loci can 
help the study of genes with functional genetic variation in the brain, 
which can provide important information for diagnosis and rational 
drug development in AD with early asymptomatic. 
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